Low power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays
Abstract
All-optical magnetic switching promises ultrafast, high-resolution magnetisation control with the technological attraction of requiring no magnetic field. Existing all-optical switching schemes are driven by ultrafast transient effects, typically requiring power-hungry femtosecond-pulsed lasers and complex magnetic materials. Here, we demonstrate deterministic, all-optical magnetic switching in simple ferromagnetic nanomagnets (Ni$_{81}$Fe$_{19}$, Ni$_{50}$Fe$_{50}$) with sub-diffraction limit dimensions using a focused low-power, linearly-polarised continuous-wave laser. Isolated nanomagnets are switched across a range of dimensions, laser wavelengths and powers. All square-geometry artificial spin ice vertex configurations are written, including ground-state and energetically-unfavourable `monopole-like' states at powers as low as 2.74 mW. Usually, magnetic switching with linearly polarised light is symmetry-forbidden; however, here the laser spot has a similar size to the nanomagnets, producing an absorption distribution dependent on the relative nanoisland-spot displacement. We attribute the observed deterministic switching to the transient dynamics of this asymmetric absorption. No switching is observed in Co samples, suggesting the multi-species nature of NiFe alloys plays a role in reversal. The results presented here usher in cheap, low-power optically-controlled devices with impact across data storage, neuromorphic computation and reconfigurable magnonics.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2021
- DOI:
- arXiv:
- arXiv:2112.00697
- Bibcode:
- 2021arXiv211200697S
- Keywords:
-
- Condensed Matter - Mesoscale and Nanoscale Physics