Complete weighted Bergman spaces have bounded point evaluations
Abstract
Let $\Omega\subset \mathbb{C}$ be an arbitrary domain in the one-dimensional complex plane equipped with a positive Radon measure $\mu$. For any $1\le p< \infty$, it is shown that the weighted Bergman space $A^p(\Omega, \mu)$ of holomorphic functions is a Banach space if and only if $A^p(\Omega, \mu)$ has locally uniformly bounded point evaluations. In particular, in the case $p =2$, any complete Bergman space $A^2(\Omega, \mu)$ is automatically a reproducing kernel Hilbert space.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2021
- DOI:
- 10.48550/arXiv.2111.07575
- arXiv:
- arXiv:2111.07575
- Bibcode:
- 2021arXiv211107575H
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Complex Variables
- E-Print:
- 6 pages