Analytic twists of $\rm GL_2\times\rm GL_2$ automorphic forms
Abstract
Let $f$ and $g$ be holomorphic or Maass cusp forms for $\rm SL_2(\mathbb{Z})$ with normalized Fourier coefficients $\lambda_f(n)$ and $\lambda_g(n)$, respectively. In this paper, we prove nontrivial estimates for the sum $$ \sum_{n=1}^{\infty}\lambda_f(n) \lambda_g(n)e\left(t \varphi\left(\frac{n}{X}\right)\right)V\left(\frac{n}{X}\right), $$ where $e(x)=e^{2\pi ix}$, $V(x)\in \mathcal{C}_c^{\infty}(1,2)$, $t\geq 1$ is a large parameter and $\varphi(x)$ is some nonlinear real valued smooth function. Applications of these estimates include a subconvex bound for the Rankin-Selberg $L$-function $L(s,f\otimes g)$ in the $t$-aspect, an improved estimate for a nonlinear exponential twisted sum and the following asymptotic formula for the sum of the Fourier coefficients of certain $\rm{GL}_5$ Eisenstein series $$ \sum_{n \leq X}\lambda_{1\boxplus(f\times g)}(n) =L(1,f\times g)X + O(X^{\frac{2}{3}-\frac{1}{356}+\varepsilon}) $$ for any $\varepsilon>0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2021
- DOI:
- arXiv:
- arXiv:2108.09410
- Bibcode:
- 2021arXiv210809410H
- Keywords:
-
- Mathematics - Number Theory;
- 11F30;
- 11L07;
- 11F66;
- 11M41
- E-Print:
- 30 pages. Comments welcome! arXiv admin note: text overlap with arXiv:1912.09772