Token Shift Transformer for Video Classification
Abstract
Transformer achieves remarkable successes in understanding 1 and 2-dimensional signals (e.g., NLP and Image Content Understanding). As a potential alternative to convolutional neural networks, it shares merits of strong interpretability, high discriminative power on hyper-scale data, and flexibility in processing varying length inputs. However, its encoders naturally contain computational intensive operations such as pair-wise self-attention, incurring heavy computational burden when being applied on the complex 3-dimensional video signals. This paper presents Token Shift Module (i.e., TokShift), a novel, zero-parameter, zero-FLOPs operator, for modeling temporal relations within each transformer encoder. Specifically, the TokShift barely temporally shifts partial [Class] token features back-and-forth across adjacent frames. Then, we densely plug the module into each encoder of a plain 2D vision transformer for learning 3D video representation. It is worth noticing that our TokShift transformer is a pure convolutional-free video transformer pilot with computational efficiency for video understanding. Experiments on standard benchmarks verify its robustness, effectiveness, and efficiency. Particularly, with input clips of 8/12 frames, the TokShift transformer achieves SOTA precision: 79.83%/80.40% on the Kinetics-400, 66.56% on EGTEA-Gaze+, and 96.80% on UCF-101 datasets, comparable or better than existing SOTA convolutional counterparts. Our code is open-sourced in: https://github.com/VideoNetworks/TokShift-Transformer.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2021
- DOI:
- 10.48550/arXiv.2108.02432
- arXiv:
- arXiv:2108.02432
- Bibcode:
- 2021arXiv210802432Z
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Multimedia
- E-Print:
- ACM Multimedia 2021, 9 pages, 5 figures