Low-Rank Hankel Tensor Completion for Traffic Speed Estimation
Abstract
This paper studies the traffic state estimation (TSE) problem using sparse observations from mobile sensors. Most existing TSE methods either rely on well-defined physical traffic flow models or require large amounts of simulation data as input to train machine learning models. Different from previous studies, we propose a purely data-driven and model-free solution in this paper. We consider the TSE as a spatiotemporal matrix completion/interpolation problem, and apply spatiotemporal delay embedding to transform the original incomplete matrix into a fourth-order Hankel structured tensor. By imposing a low-rank assumption on this tensor structure, we can approximate and characterize both global and local spatiotemporal patterns in a data-driven manner. We use the truncated nuclear norm of a balanced spatiotemporal unfolding -- in which each column represents the vectorization of a small patch in the original matrix -- to approximate the tensor rank. An efficient solution algorithm based on the Alternating Direction Method of Multipliers (ADMM) is developed for model learning. The proposed framework only involves two hyperparameters, spatial and temporal window lengths, which are easy to set given the degree of data sparsity. We conduct numerical experiments on real-world high-resolution trajectory data, and our results demonstrate the effectiveness and superiority of the proposed model in some challenging scenarios.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2021
- DOI:
- arXiv:
- arXiv:2105.11335
- Bibcode:
- 2021arXiv210511335W
- Keywords:
-
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Signal Processing