Learning Multi-Attention Context Graph for Group-Based Re-Identification
Abstract
Learning to re-identify or retrieve a group of people across non-overlapped camera systems has important applications in video surveillance. However, most existing methods focus on (single) person re-identification (re-id), ignoring the fact that people often walk in groups in real scenarios. In this work, we take a step further and consider employing context information for identifying groups of people, i.e., group re-id. We propose a novel unified framework based on graph neural networks to simultaneously address the group-based re-id tasks, i.e., group re-id and group-aware person re-id. Specifically, we construct a context graph with group members as its nodes to exploit dependencies among different people. A multi-level attention mechanism is developed to formulate both intra-group and inter-group context, with an additional self-attention module for robust graph-level representations by attentively aggregating node-level features. The proposed model can be directly generalized to tackle group-aware person re-id using node-level representations. Meanwhile, to facilitate the deployment of deep learning models on these tasks, we build a new group re-id dataset that contains more than 3.8K images with 1.5K annotated groups, an order of magnitude larger than existing group re-id datasets. Extensive experiments on the novel dataset as well as three existing datasets clearly demonstrate the effectiveness of the proposed framework for both group-based re-id tasks. The code is available at https://github.com/daodaofr/group_reid.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2021
- DOI:
- arXiv:
- arXiv:2104.14236
- Bibcode:
- 2021arXiv210414236Y
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- doi:10.1109/TPAMI.2020.3032542