Model Reduction Captures Stochastic Gamma Oscillations on Low-Dimensional Manifolds
Abstract
Gamma frequency oscillations (25-140 Hz), observed in the neural activities within many brain regions, have long been regarded as a physiological basis underlying many brain functions, such as memory and attention. Among numerous theoretical and computational modeling studies, gamma oscillations have been found in biologically realistic spiking network models of the primary visual cortex. However, due to its high dimensionality and strong nonlinearity, it is generally difficult to perform detailed theoretical analysis of the emergent gamma dynamics. Here we propose a suite of Markovian model reduction methods with varying levels of complexity and applied it to spiking network models exhibiting heterogeneous dynamical regimes, ranging from homogeneous firing to strong synchrony in the gamma band. The reduced models not only successfully reproduce gamma band oscillations in the full model, but also exhibit the same dynamical features as we vary parameters. Most remarkably, the invariant measure of the coarse-grained Markov process reveals a two-dimensional surface in state space upon which the gamma dynamics mainly resides. Our results suggest that the statistical features of gamma oscillations strongly depend on the subthreshold neuronal distributions. Because of the generality of the Markovian assumptions, our dimensional reduction methods offer a powerful toolbox for theoretical examinations of many other complex cortical spatio-temporal behaviors observed in both neurophysiological experiments and numerical simulations.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2021
- DOI:
- 10.48550/arXiv.2101.01699
- arXiv:
- arXiv:2101.01699
- Bibcode:
- 2021arXiv210101699C
- Keywords:
-
- Quantitative Biology - Neurons and Cognition;
- Quantitative Biology - Quantitative Methods