Decayless Kink Oscillations Excited by Random Driving: Motion in Transitional Layer
Abstract
In this article we study the plasma motion in the transitional layer of a coronal loop randomly driven at one of its footpoints in the thin-tube and thin-boundary-layer (TTTB) approximation. We introduce the average of the square of a random function with respect to time. This average can be considered as the square of the oscillation amplitude of this quantity. Then we calculate the oscillation amplitudes of the radial and azimuthal plasma displacement as well as the perturbation of the magnetic pressure. We find that the amplitudes of the plasma radial displacement and the magnetic-pressure perturbation do not change across the transitional layer. The amplitude of the plasma radial displacement is of the same order as the driver amplitude. The amplitude of the magnetic-pressure perturbation is of the order of the driver amplitude times the ratio of the loop radius to the loop length squared. The amplitude of the plasma azimuthal displacement is of the order of the driver amplitude times Re1/6, where Re is the Reynolds number. It has a peak at the position in the transitional layer where the local Alfvén frequency coincides with the fundamental frequency of the loop kink oscillation. The ratio of the amplitude near this position and far from it is of the order of ℓ , where ℓ is the ratio of thickness of the transitional layer to the loop radius. We calculate the dependence of the plasma azimuthal displacement on the radial distance in the transitional layer in a particular case where the density profile in this layer is linear.
- Publication:
-
Solar Physics
- Pub Date:
- August 2021
- DOI:
- 10.1007/s11207-021-01867-5
- Bibcode:
- 2021SoPh..296..124R
- Keywords:
-
- Sun;
- Plasma;
- Magnetohydrodynamics;
- Waves;
- Oscillations;
- Stability