H I intensity mapping with the MIGHTEE survey: power spectrum estimates
Abstract
Intensity mapping (IM) with neutral hydrogen is a promising avenue to probe the large-scale structure of the Universe. In this paper, we demonstrate that using the 64-dish MeerKAT radio telescope as a connected interferometer, it is possible to make a statistical detection of H I in the post-reionization Universe. With the MIGHTEE (MeerKAT International GHz Tiered Extragalactic Exploration) survey project observing in the L-band (856 MHz < ν < 1712 MHz, z < 0.66), we can achieve the required sensitivity to measure the H I IM power spectrum on quasi-linear scales, which will provide an important complementarity to the single-dish IM MeerKAT observations. We present a purpose-built simulation pipeline that emulates the MIGHTEE observations and forecasts the constraints that can be achieved on the H I power spectrum at z = 0.27 for k > 0.3 $\rm {Mpc}^{-1}$ using the foreground avoidance method. We present the power spectrum estimates with the current simulation on the COSMOS field that includes contributions from H I, noise, and point-source models constructed from the observed MIGHTEE data. The results from our visibility-based pipeline are in qualitative agreement to the already available MIGHTEE data. This paper demonstrates that MeerKAT can achieve very high sensitivity to detect H I with the full MIGHTEE survey on quasi-linear scales (signal-to-noise ratio >7 at k = 0.49 $\rm {Mpc}^{-1}$) that are instrumental in probing cosmological quantities such as the spectral index of fluctuation, constraints on warm dark matter, the quasi-linear redshift space distortions, and the measurement of the H I content of the Universe up to z ~ 0.5.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- August 2021
- DOI:
- arXiv:
- arXiv:2009.13550
- Bibcode:
- 2021MNRAS.505.2039P
- Keywords:
-
- techniques: interferometric;
- large-scale structure of Universe;
- cosmology: observations;
- radio lines: galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 13 pages, 8 figures, accepted for publication in MNRAS