Was the January 26th, 1700 Cascadia Earthquake Part of a Rupture Sequence?
Abstract
Coastal subsidence, dating of plant remains and tree rings, and evidence for tsunami inundation point to coseismic activity on a sizable portion of the Cascadia subduction zone around three centuries ago. A tsunami of remote origin in 1700 C.E., probably from Cascadia, caused flooding and damage in Japan. In previous modeling, this transpacific evidence was found most simply explained by one Cascadia rupture about 1,000 km long. Here I model tens of thousands of ruptures and simulate their subsidence and tsunami signals and show that it is possible that the earthquake was part of a sequence of several events. Partial rupture of ∼400 km offshore southern Oregon and northern California in one large M ≥ 8.7 earthquake can explain the tsunami in Japan without conflicting with the subsidence. As many as four more earthquakes with M ≤ 8.7 can complete the subsidence signal without their tsunamis being large enough to be recorded in Japan. The purpose of this study is not to find a single, most likely, scenario or disprove the single-rupture hypothesis favored by alternative evidence such as turbidites. Rather, it demonstrates that a multiple rupture sequence may explain part of the available data, and therefore cannot be discounted. Given the gaps in the presently available estimates of subsidence it is also possible that segments of the megathrust, for example from Copalis to the Strait of Juan de Fuca, did not rupture in 1700. The findings have significant implications for Cascadia geodynamics and how earthquake and tsunami hazards in the region are quantified.
- Publication:
-
Journal of Geophysical Research (Solid Earth)
- Pub Date:
- October 2021
- DOI:
- 10.1029/2021JB021822
- Bibcode:
- 2021JGRB..12621822M
- Keywords:
-
- Cascadia;
- subduction zones;
- tsunamis;
- Physical Sciences and Mathematics