Multiwavelength Spectral Analysis and Neural Network Classification of Counterparts to 4FGL Unassociated Sources
Abstract
The Fermi-LAT unassociated sources represent some of the most enigmatic gamma-ray sources in the sky. Observations with the Swift-XRT and -UVOT telescopes have identified hundreds of likely X-ray and UV/optical counterparts in the uncertainty ellipses of the unassociated sources. In this work we present spectral fitting results for 205 possible X-ray/UV/optical counterparts to 4FGL unassociated targets. Assuming that the unassociated sources contain mostly pulsars and blazars, we develop a neural network classifier approach that applies gamma-ray, X-ray, and UV/optical spectral parameters to yield a descriptive classification of unassociated spectra into pulsars and blazars. From our primary sample of 174 Fermi sources with a single X-ray/UV/optical counterpart, we present 132 P bzr > 0.99 likely blazars and 14 P bzr < 0.01 likely pulsars, with 28 remaining ambiguous. These subsets of the unassociated sources suggest a systematic expansion to catalogs of gamma-ray pulsars and blazars. Compared to previous classification approaches our neural network classifier achieves significantly higher validation accuracy and returns more bifurcated P bzr values, suggesting that multiwavelength analysis is a valuable tool for confident classification of Fermi unassociated sources.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- December 2021
- DOI:
- arXiv:
- arXiv:2110.04100
- Bibcode:
- 2021ApJ...923...75K
- Keywords:
-
- 633;
- 1822;
- 164;
- 1306;
- 1933;
- 1907;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 13 pages text, 6 figures, 5 tables including 2 catalog tables