Wave Excitation by Power-law-Distributed Energetic Electrons with Pitch-angle Anisotropy in the Solar Corona
Abstract
Radio waves from the Sun are emitted, as a rule, due to energized electrons. Observations infer that the related energized electrons follow (negative) power-law velocity distributions above a break velocity Ub. They might also distribute anisotropically in the pitch-angle space. To understand radio wave generation better, we study the consequences of anisotropic power-law-distributed energetic electrons in current-free collisionless coronal plasmas utilizing 2.5-dimensional particle-in-cell simulations. We assume that the velocity distribution fu of the energized electrons follows a plateau (∂fu/∂u = 0) and a power-law distribution with spectral index α for velocities below and above Ub, respectively. In the pitch-angle space, these energized electrons are spread around a center μc = 0.5. We found that the energetic plateau-power-law electrons can more efficiently generate coherent waves if the anisotropy of their pitch-angle distribution is sufficiently strong, i.e., a small pitch-angle spread μs. The break velocity Ub affects the excitation dominance between the electrostatic and electromagnetic waves: for larger Ub electrostatic waves are mainly excited, while intermediate values of Ub are required for an excitation dominated by electromagnetic waves. The spectral index α controls the growth rate, efficiency, saturation, and anisotropy of the excited electromagnetic waves as well as the energy partition in different wave modes. These excited electromagnetic waves are predominantly right-handed polarized, in X- and Z-modes, as observed, e.g., in solar radio spikes. Additionally about 90% of the kinetic energy loss of the energetic electrons is dissipated, heating the ambient thermal electrons. This may contribute to the coronal heating.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- October 2021
- DOI:
- Bibcode:
- 2021ApJ...920..147Z
- Keywords:
-
- Solar corona;
- Solar coronal heating;
- Solar radio emission;
- 1483;
- 1989;
- 1522