The Strength and Structure of the Magnetic Field in the Galactic Outflow of Messier 82
Abstract
Galactic outflows driven by starbursts can modify the galactic magnetic fields and drive them away from the galactic planes. Here, we quantify how these fields may magnetize the intergalactic medium (IGM). We estimate the strength and structure of the fields in the starburst galaxy M82 using thermal polarized emission observations from the Stratospheric Observatory for Infrared Astronomy/High-resolution Airborne Wideband Camera-plus and a potential field extrapolation commonly used in solar physics. We modified the Davis-Chandrasekhar-Fermi method to account for the large-scale flow and the turbulent field. Results show that the observed magnetic fields arise from the combination of a large-scale ordered potential field associated with the outflow and a small-scale turbulent field associated with bow-shock-like features. Within the central 900 pc radius, the large-scale field accounts for 53 ± 4% of the observed turbulent magnetic energy with a median field strength of 305 ± 15 μG, while small-scale turbulent magnetic fields account for the remaining 40 ± 5% with a median field strength of 222 ± 19 μG. We estimate that the turbulent kinetic and turbulent magnetic energies are in close equipartition up to ~2 kpc (measured), while the turbulent kinetic energy dominates at ~7 kpc (extrapolated). We conclude that the fields are frozen into the ionized outflowing medium and driven away kinetically. The magnetic field lines in the galactic wind of M82 are open, providing a direct channel between the starburst core and the IGM. Our novel approach offers the tools needed to quantify the effects of outflows on galactic magnetic fields as well as their influence on the IGM and evolution of energetic particles.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- June 2021
- DOI:
- arXiv:
- arXiv:2102.03362
- Bibcode:
- 2021ApJ...914...24L
- Keywords:
-
- Extragalactic magnetic fields;
- Starburst galaxies;
- Polarimetry;
- Solar physics;
- 507;
- 1570;
- 1278;
- 1476;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 17 pages, 9 figures, Accepted for publication in ApJ