Calibrating X-Ray Binary Luminosity Functions via Optical Reconnaissance. I. The Case of M83
Abstract
Building on recent work by Chandar et al., we construct X-ray luminosity functions (XLFs) for different classes of X-ray binary (XRB) donors in the nearby star-forming galaxy M83 through a novel methodology. Rather than classifying low- versus high-mass XRBs based on the scaling of the number of X-ray sources with stellar mass and star formation rate, respectively, we utilize multiband Hubble Space Telescope imaging data to classify each Chandra-detected compact X-ray source as a low-mass (i.e., donor mass ≲3 M⊙), high-mass (donor mass ≳8M⊙), or intermediate-mass XRB based on either the location of its candidate counterpart on optical color-magnitude diagrams or the age of its host star cluster. In addition to the standard (single and/or truncated) power-law functional shape, we approximate the resulting XLFs with a Schechter function. We identify a marginally significant (at the 1σ-to-2σ level) exponential downturn for the high-mass XRB XLF, at ${\ell }\simeq {38.48}_{-0.33}^{+0.52}$ (in log CGS units). In contrast, the low- and intermediate-mass XRB XLFs, as well as the total XLF of M83, are formally consistent with sampling statistics from a single power law. Our method suggests a non-negligible contribution from low- and possibly intermediate-mass XRBs to the total XRB XLF of M83, i.e., between 20% and 50%, in broad agreement with X-ray-based XLFs. More generally, we caution against considerable contamination from X-ray emitting supernova remnants to the published, X-ray-based XLFs of M83, and possibly all actively star-forming galaxies.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- May 2021
- DOI:
- 10.3847/1538-4357/abe531
- arXiv:
- arXiv:2102.07293
- Bibcode:
- 2021ApJ...912...31H
- Keywords:
-
- X-ray binary stars;
- Luminosity function;
- HST photometry;
- Late-type galaxies;
- 1811;
- 942;
- 756;
- 907;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 18 pages (text, 44 with figures), 8 figures + 1 long figure, 1 table + 1 long table. Accepted by ApJ