Observational Constraints on Black Hole Spin
Abstract
The spin of a black hole is an important quantity to study, providing a window into the processes by which a black hole was born and grew. Furthermore, spin can be a potent energy source for powering relativistic jets and energetic particle acceleration. In this review, I describe the techniques currently used to detect and measure the spins of black holes. It is shown that: Two well-understood techniques, X-ray reflection spectroscopy and thermal continuum fitting, can be used to measure the spins of black holes that are accreting at moderate rates. There is a rich set of other electromagnetic techniques allowing us to extend spin measurements to lower accretion rates. Many accreting supermassive black holes are found to be rapidly spinning, although a population of more slowly spinning black holes emerges at masses above as expected from recent structure formation models. Many accreting stellar-mass black holes in X-ray binary systems are rapidly spinning and must have been born in this state. The advent of gravitational wave astronomy has enabled the detection of spin effects in merging binary black holes. Most of the premerger black holes are found to be slowly spinning, a notable exception being an object that may itself be a merger product. The stark difference in spins between the black hole X-ray binary and the binary black hole populations shows that there is a diversity of formation mechanisms.Given the array of new electromagnetic and gravitational wave capabilities currently being planned, the future of black hole spin studies is bright.
- Publication:
-
Annual Review of Astronomy and Astrophysics
- Pub Date:
- September 2021
- DOI:
- 10.1146/annurev-astro-112420-035022
- arXiv:
- arXiv:2011.08948
- Bibcode:
- 2021ARA&A..59..117R
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies;
- General Relativity and Quantum Cosmology
- E-Print:
- 42 pages, 6 figures. Invited review to be published in Annual Reviews of Astronomy and Astrophysics