Cosmology Intertwined II: The hubble constant tension
Abstract
The current cosmological probes have provided a fantastic confirmation of the standard Λ Cold Dark Matter cosmological model, which has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity, a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in part the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the 4.4 σ tension between the Planck estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting models of new physics that could solve this tension and discuss how the next decade's experiments will be crucial.
- Publication:
-
Astroparticle Physics
- Pub Date:
- September 2021
- DOI:
- 10.1016/j.astropartphys.2021.102605
- arXiv:
- arXiv:2008.11284
- Bibcode:
- 2021APh...13102605D
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- High Energy Physics - Phenomenology
- E-Print:
- Snowmass2021 - Letter of Interest