Hubble Space Telescope UV and Hα Measurements of the Accretion Excess Emission from the Young Giant Planet PDS 70 b
Abstract
Recent discoveries of young exoplanets within their natal disks offer exciting opportunities to study ongoing planet formation. In particular, a planet's mass accretion rate can be constrained by observing the accretion-induced excess emission. So far, planetary accretion is only probed by the Hα line, which is then converted to a total accretion luminosity using correlations derived for stars. However, the majority of the accretion luminosity is expected to emerge from hydrogen continuum emission, and is best measured in the ultraviolet (UV). In this paper, we present HST/WFC3/UVIS F336W (UV) and F656N (Hα) high-contrast imaging observations of PDS 70. Applying a suite of novel observational techniques, we detect the planet PDS 70 b with signal-to-noise ratios of 5.3 and 7.8 in the F336W and F656N bands, respectively. This is the first time that an exoplanet has been directly imaged in the UV. Our observed Hα flux of PDS 70 b is higher by $3.5\sigma $ than the most recent published result. However, the light curve retrieved from our observations does not support greater than 30% variability in the planet's Hα emission in six epochs over a five month timescale. We estimate a mass accretion rate of $1.4\pm 0.2\times {10}^{-8}{M}_{\mathrm{Jup}}\,{\mathrm{yr}}^{-1}$ . Hα accounts for 36% of the total accretion luminosity. Such a high proportion of energy released in line emission suggests efficient production of Hα emission in planetary accretion, and motivates using the Hα band for searches of accreting planets. These results demonstrate HST/WFC3/UVIS's excellent high-contrast imaging performance and highlight its potential for planet formation studies.
- Publication:
-
The Astronomical Journal
- Pub Date:
- May 2021
- DOI:
- arXiv:
- arXiv:2104.13934
- Bibcode:
- 2021AJ....161..244Z
- Keywords:
-
- Exoplanet astronomy;
- Exoplanet formation;
- Planet formation;
- Accretion;
- Extrasolar gaseous giant planets;
- 486;
- 492;
- 1241;
- 14;
- 509;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- Published on Astronomical Journal