The properties of the AGN torus as revealed from a set of unbiased NuSTAR observations
Abstract
The obscuration observed in active galactic nuclei (AGNs) is mainly caused by dust and gas distributed in a torus-like structure surrounding the supermassive black hole. However, the properties of the obscuring torus of an AGN in X-ray have not yet been fully investigated because of a lack of high-quality data and proper models. In this work, we perform a broadband X-ray spectral analysis of a large, unbiased sample of obscured AGNs (with line-of-sight column density 23 ≤ log(NH) ≤ 24) in the nearby Universe for which high-quality archival NuSTAR data are available. We analyzed the source spectra using the recently developed borus02 model, which enables us to accurately characterize the physical and geometrical properties of AGN-obscuring tori. We compare our results obtained from the unbiased Compton-thin AGNs with those of Compton-thick AGNs. We find that Compton-thin and Compton-thick AGNs may possess similar tori, whose average column density is Compton thick (NH, tor, ave ≈ 1.4 × 1024 cm−2), but they are observed through different (under-dense or over-dense) regions of the tori. We also find that the obscuring torus medium is significantly inhomogeneous, with the torus average column densities being significantly different from their line-of-sight column densities (for most of the sources in the sample). The average torus covering factor of sources in our unbiased sample is cf = 0.67, suggesting that the fraction of unobscured AGNs is ∼33%. We developed a new method to measure the intrinsic line-of-sight column density distribution of AGNs in the nearby Universe, and find the results to be in good agreement with constraints from recent population synthesis models.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- June 2021
- DOI:
- arXiv:
- arXiv:2011.03851
- Bibcode:
- 2021A&A...650A..57Z
- Keywords:
-
- galaxies: active;
- Galaxy: nucleus;
- X-rays: galaxies;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 16 pages, 14 figures, 7 tables