One Metric to Measure them All: Localisation Recall Precision (LRP) for Evaluating Visual Detection Tasks
Abstract
Despite being widely used as a performance measure for visual detection tasks, Average Precision (AP) is limited in (i) reflecting localisation quality, (ii) interpretability and (iii) robustness to the design choices regarding its computation, and its applicability to outputs without confidence scores. Panoptic Quality (PQ), a measure proposed for evaluating panoptic segmentation (Kirillov et al., 2019), does not suffer from these limitations but is limited to panoptic segmentation. In this paper, we propose Localisation Recall Precision (LRP) Error as the average matching error of a visual detector computed based on both its localisation and classification qualities for a given confidence score threshold. LRP Error, initially proposed only for object detection by Oksuz et al. (2018), does not suffer from the aforementioned limitations and is applicable to all visual detection tasks. We also introduce Optimal LRP (oLRP) Error as the minimum LRP Error obtained over confidence scores to evaluate visual detectors and obtain optimal thresholds for deployment. We provide a detailed comparative analysis of LRP Error with AP and PQ, and use nearly 100 state-of-the-art visual detectors from seven visual detection tasks (i.e. object detection, keypoint detection, instance segmentation, panoptic segmentation, visual relationship detection, zero-shot detection and generalised zero-shot detection) using ten datasets to empirically show that LRP Error provides richer and more discriminative information than its counterparts. Code available at: https://github.com/kemaloksuz/LRP-Error
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2020
- DOI:
- arXiv:
- arXiv:2011.10772
- Bibcode:
- 2020arXiv201110772O
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- Accepted to TPAMI