Exterior scattering of non-radial solutions to energy subcritical wave equations
Abstract
We consider the defocusing, energy subcritical wave equation $\partial_t^2 u - \Delta u = -|u|^{p-1} u$ in dimension $d \in \{3,4,5\}$ and prove the exterior scattering of solutions if $3\leq d \leq 5$ and $1+6/d<p<1+4/(d-2)$. More precisely, given any solution with a finite energy, there exists a solution $u_L$ to the homogeneous linear wave equation, so that the following limit holds \[ \lim_{t\rightarrow +\infty} \int_{|x|>t+R} |\nabla_{x,t} u(x,t)- \nabla_{x,t} u_L(x,t)|^2 dx = 0 \] for any fixed real number $R$. This generalize the previously known exterior scattering result in the radial case.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2020
- DOI:
- arXiv:
- arXiv:2009.13991
- Bibcode:
- 2020arXiv200913991S
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35L05;
- 35L71
- E-Print:
- 12 pages, 1 figure