On certain sums of number theory
Abstract
We study sums of the shape $\sum_{n \leqslant x} f \left( \lfloor x/n \rfloor \right)$ where $f$ is either the von Mangoldt function or the Dirichlet-Piltz divisor functions. We improve previous estimates when $f = \Lambda$ and $f = \tau$, and provide new results when $f = \tau_r$ with $r \geqslant 3$, breaking the $\frac{1}{2}$-barrier in each case. The functions $f=\mu^2$, $f=2^\omega$ and $f=\omega$ are also investigated.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2020
- DOI:
- 10.48550/arXiv.2009.05751
- arXiv:
- arXiv:2009.05751
- Bibcode:
- 2020arXiv200905751B
- Keywords:
-
- Mathematics - Number Theory;
- 11N37;
- 11L07
- E-Print:
- 16 pages. In this version, the function omega has been added. Comments are welcome