Proof Complexity of Substructural Logics
Abstract
In this paper, we investigate the proof complexity of a wide range of substructural systems. For any proof system $\mathbf{P}$ at least as strong as Full Lambek calculus, $\mathbf{FL}$, and polynomially simulated by the extended Frege system for some infinite branching super-intuitionistic logic, we present an exponential lower bound on the proof lengths. More precisely, we will provide a sequence of $\mathbf{P}$-provable formulas $\{A_n\}_{n=1}^{\infty}$ such that the length of the shortest $\mathbf{P}$-proof for $A_n$ is exponential in the length of $A_n$. The lower bound also extends to the number of proof-lines (proof-lengths) in any Frege system (extended Frege system) for a logic between $\mathsf{FL}$ and any infinite branching super-intuitionistic logic. We will also prove a similar result for the proof systems and logics extending Visser's basic propositional calculus $\mathbf{BPC}$ and its logic $\mathsf{BPC}$, respectively. Finally, in the classical substructural setting, we will establish an exponential lower bound on the number of proof-lines in any proof system polynomially simulated by the cut-free version of $\mathbf{CFL_{ew}}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2020
- DOI:
- arXiv:
- arXiv:2006.09705
- Bibcode:
- 2020arXiv200609705J
- Keywords:
-
- Mathematics - Logic;
- Computer Science - Logic in Computer Science
- E-Print:
- 34 pages