Nonlinear boundary value problems relative to one dimensional heat equation
Abstract
We consider the problem of existence of a solution $u$ to $\partial_t u-\partial_{xx} u = 0$ in $(0,T)\times\mathbb{R}_+$ subject to the boundary condition $-u_x(t,0)+g(u(t,0))=\mu$ on $(0,T)$ where $\mu$ is a measure on $(0,T)$ and $g$ a continuous nondecreasing function. When $p>1$ we study the set of self-similar solutions of $\partial_t u-\partial_{xx} u = 0$ in $\mathbb{R}_+\times\mathbb{R}_+$ such that $-u_x(t,0)+u^p=0$ on $(0,\infty)$. At end, we present various extensions to a higher dimensional framework.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2020
- DOI:
- 10.48550/arXiv.2006.03335
- arXiv:
- arXiv:2006.03335
- Bibcode:
- 2020arXiv200603335V
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 22 pages, 16 ref. Rendiconti dell'Istituto di Matematica dell'Universit{\`a} di Trieste: an International Journal of Mathematics, Universit{\`a} di Trieste, In press