Distance and Equivalence between Finite State Machines and Recurrent Neural Networks: Computational results
Abstract
The need of interpreting Deep Learning (DL) models has led, during the past years, to a proliferation of works concerned by this issue. Among strategies which aim at shedding some light on how information is represented internally in DL models, one consists in extracting symbolic rule-based machines from connectionist models that are supposed to approximate well their behaviour. In order to better understand how reasonable these approximation strategies are, we need to know the computational complexity of measuring the quality of approximation. In this article, we will prove some computational results related to the problem of extracting Finite State Machine (FSM) based models from trained RNN Language models. More precisely, we'll show the following: (a) For general weighted RNN-LMs with a single hidden layer and a ReLu activation: - The equivalence problem of a PDFA/PFA/WFA and a weighted first-order RNN-LM is undecidable; - As a corollary, the distance problem between languages generated by PDFA/PFA/WFA and that of a weighted RNN-LM is not recursive; -The intersection between a DFA and the cut language of a weighted RNN-LM is undecidable; - The equivalence of a PDFA/PFA/WFA and weighted RNN-LM in a finite support is EXP-Hard; (b) For consistent weight RNN-LMs with any computable activation function: - The Tcheybechev distance approximation is decidable; - The Tcheybechev distance approximation in a finite support is NP-Hard. Moreover, our reduction technique from 3-SAT makes this latter fact easily generalizable to other RNN architectures (e.g. LSTMs/RNNs), and RNNs with finite precision.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2020
- DOI:
- arXiv:
- arXiv:2004.00478
- Bibcode:
- 2020arXiv200400478M
- Keywords:
-
- Computer Science - Machine Learning;
- Statistics - Machine Learning