Synthetic Flux Attachment
Abstract
Topological field theories emerge at low energy in strongly-correlated condensed matter systems and appear in the context of planar gravity. In particular, the study of Chern-Simons terms gives rise to the concept of flux attachment when the gauge field is coupled to matter, yielding flux-charge composites. Here we investigate the generation of flux attachment in a Bose-Einstein condensate in the presence of non-linear synthetic gauge potentials. In doing so, we identify the U(1) Chern-Simons gauge field as a singular density-dependent gauge potential, which in turn can be expressed as a Berry connection. We envisage a proof-of-concept scheme where the artificial gauge field is perturbatively induced by an effective light-matter detuning created by interparticle interactions. At a mean field level, we recover the action of a "charged" superfluid minimally coupled to both a background and a Chern-Simons gauge field. Remarkably, a localised density perturbation in combination with a non-linear gauge potential gives rise to an effective composite boson model of fractional quantum Hall effect, displaying anyonic vortices.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2020
- DOI:
- 10.48550/arXiv.2003.14339
- arXiv:
- arXiv:2003.14339
- Bibcode:
- 2020arXiv200314339V
- Keywords:
-
- Condensed Matter - Quantum Gases;
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Strongly Correlated Electrons;
- High Energy Physics - Theory;
- Quantum Physics
- E-Print:
- 14 pages, 3 figures. Comments are welcome