Generalized Bayes Quantification Learning under Dataset Shift
Abstract
Quantification learning is the task of prevalence estimation for a test population using predictions from a classifier trained on a different population. Quantification methods assume that the sensitivities and specificities of the classifier are either perfect or transportable from the training to the test population. These assumptions are inappropriate in the presence of dataset shift, when the misclassification rates in the training population are not representative of those for the test population. Quantification under dataset shift has been addressed only for singleclass (categorical) predictions and assuming perfect knowledge of the true labels on a small subset of the test population. We propose generalized Bayes quantification learning (GBQL) that uses the entire compositional predictions from probabilistic classifiers and allows for uncertainty in true class labels for the limited labeled test data. Instead of positing a full model, we use a modelfree Bayesian estimating equation approach to compositional data based only on a firstmoment assumption. The idea will be useful in Bayesian compositional data analysis in general as it is robust to different generating mechanisms for compositional data and includes categorical outputs as a special case. We show how our method yields existing quantification approaches as special cases. Extension to an ensemble GBQL that uses predictions from multiple classifiers yielding inference robust to inclusion of a poor classifier is discussed. We outline a fast and efficient Gibbs sampler using a rounding and coarsening approximation to the loss functions. We also establish posterior consistency, asymptotic normality and valid coverage of interval estimates from GBQL, as well as finite sample posterior concentration rate. Empirical performance of GBQL is demonstrated through simulations and analysis of real data with evident dataset shift.
 Publication:

arXiv eprints
 Pub Date:
 January 2020
 DOI:
 10.48550/arXiv.2001.05360
 arXiv:
 arXiv:2001.05360
 Bibcode:
 2020arXiv200105360F
 Keywords:

 Statistics  Methodology
 EPrint:
 59 pages, 15 figures