Kinetic theory of one-dimensional homogeneous long-range interacting systems with an arbitrary potential of interaction
Abstract
Finite-N effects unavoidably drive the long-term evolution of long-range interacting N -body systems. The Balescu-Lenard kinetic equation generically describes this process sourced by 1 /N effects but this kinetic operator exactly vanishes by symmetry for one-dimensional homogeneous systems: such systems undergo a kinetic blocking and cannot relax as a whole at this order in 1 /N . It is therefore only through the much weaker 1 /N2 effects, sourced by three-body correlations, that these systems can relax, leading to a much slower evolution. In the limit where collective effects can be neglected, but for an arbitrary pairwise interaction potential, we derive a closed and explicit kinetic equation describing this very long-term evolution. We show how this kinetic equation satisfies an H -theorem while conserving particle number and energy, ensuring the unavoidable relaxation of the system toward the Boltzmann equilibrium distribution. Provided that the interaction is long-range, we also show how this equation cannot suffer from further kinetic blocking, i.e., the 1 /N2 dynamics is always effective. Finally, we illustrate how this equation quantitatively matches measurements from direct N -body simulations.
- Publication:
-
Physical Review E
- Pub Date:
- November 2020
- DOI:
- arXiv:
- arXiv:2007.14685
- Bibcode:
- 2020PhRvE.102e2110F
- Keywords:
-
- Condensed Matter - Statistical Mechanics
- E-Print:
- 15 pages, 3 figures, submitted to Phys. Rev. E