First search for low-frequency CH with a Square Kilometre Array precursor telescope
Abstract
The diatomic free radical methylidyne (CH) is an important tracer of the interstellar medium, and the study of it was critical to our earliest understanding of star formation. Although it is detectable across the electromagnetic spectrum, observations at radio frequencies allow for a study of the kinematics of the diffuse and dense gas in regions of new star formation. There is only two published (single-dish) detections of the low-frequency hyperfine transitions between 700 and 725 MHz, despite the precise frequencies being known. These low-frequency transitions are of particular interest as they are shown in laboratory experiments to be more sensitive to magnetic fields than their high-frequency counterparts (with more pronounced Zeeman splitting). In this work, we take advantage of the radio quiet environment and increased resolution of theAustralian Square Kilometre Array Pathfinder(ASKAP) over previous searches to make a pilot interferometric search for CH at 724.7883 MHz (the strongest of the hyperfine transitions) in RCW 38. We found the band is clean of radio frequency interference, but we did not detect the signal from this transition to a five-sigma sensitivity limit of 0.09 Jy, which corresponds to a total column density upper limit of 1.9$\times 10^{18}$cm–2for emission and 1.3$\times 10^{14}$cm–2for absorption with an optical depth limit of 0.95. Achieved within 5 h of integration, this column density sensitivity should have been adequate to detect the emission or absorption in RCW 38, if it had similar properties to the only previous reported detections in W51.
- Publication:
-
Publications of the Astronomical Society of Australia
- Pub Date:
- December 2020
- DOI:
- arXiv:
- arXiv:2011.08349
- Bibcode:
- 2020PASA...37...55T
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- Accepted for publication by PASA, 2 Figures, 1 Table