The MeerKAT telescope as a pulsar facility: System verification and early science results from MeerTime
Abstract
We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain ( ${∼}2.8 \mbox{K Jy}^{-1}$ ) low-system temperature ( ${∼}18 \mbox{K at }20 \mbox{cm}$ ) radio array that currently operates at 580-1 670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar $\mbox{J}0737{-}3039\mbox{A}$ , pulse profiles from 34 millisecond pulsars (MSPs) from a single 2.5-h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR $\mbox{J}0540{-}6919$ , and nulling identified in the slow pulsar PSR J0633-2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright MSPs confirm that MeerKAT delivers exceptional timing. PSR $\mbox{J}2241{-}5236$ exhibits a jitter limit of $<4 \mbox{ns h}^{-1}$ whilst timing of PSR $\mbox{J}1909{-}3744$ over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1 000 pulsars per day and the future deployment of S-band (1 750-3 500 MHz) receivers will further enhance its capabilities.
- Publication:
-
Publications of the Astronomical Society of Australia
- Pub Date:
- July 2020
- DOI:
- 10.1017/pasa.2020.19
- arXiv:
- arXiv:2005.14366
- Bibcode:
- 2020PASA...37...28B
- Keywords:
-
- instrumentation;
- pulsar processors;
- pulsar timing;
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 20 pages, 16 Figures, 4 Tables, accepted for publication in PASA