Solution-processed antireflective coating for back-contact perovskite solar cells
Abstract
Back-contact architectures for perovskite solar cells eliminate parasitic-absorption losses caused by the electrode and charge collection layers but increase surface reflection due to the high refractive index mismatch at the air/perovskite interface. To mitigate this, a ∼85 nm thick layer of poly(methyl methacrylate) (PMMA), with a refractive index between those of air and perovskite, has been applied as an antireflective coating. Transfer matrix modelling is used to determine the ideal PMMA layer thickness, with UV-Vis spectroscopy measurements used to confirm the increase in absorption that arises through the application of the antireflective coating. The deposition of a thin film of PMMA via spin coating onto a solar cell results in a 20-30% relative increase in short circuit current density and stable power output density.
- Publication:
-
Optics Express
- Pub Date:
- April 2020
- DOI:
- 10.1364/OE.384039
- Bibcode:
- 2020OExpr..2812650B