Return of the Big Glitcher: NICER timing and glitches of PSR J0537-6910
Abstract
PSR J0537-6910, also known as the Big Glitcher, is the most prolific glitching pulsar known, and its spin-induced pulsations are only detectable in X-ray. We present results from analysis of 2.7 yr of NICER timing observations, from 2017 August to 2020 April. We obtain a rotation phase-connected timing model for the entire time span, which overlaps with the third observing run of LIGO/Virgo, thus enabling the most sensitive gravitational wave searches of this potentially strong gravitational wave-emitting pulsar. We find that the short-term braking index between glitches decreases towards a value of 7 or lower at longer times since the preceding glitch. By combining NICER and RXTE data, we measure a long-term braking index n = -1.25 ± 0.01. Our analysis reveals eight new glitches, the first detected since 2011, near the end of RXTE, with a total NICER and RXTE glitch activity of $8.88\times 10^{-7}\, \mathrm{yr^{-1}}$. The new glitches follow the seemingly unique time-to-next-glitch-glitch-size correlation established previously using RXTE data, with a slope of $5\, \rm {d} \, \mu \mathrm{Hz}^{-1}$. For one glitch around which NICER observes 2 d on either side, we search for but do not see clear evidence of spectral nor pulse profile changes that may be associated with the glitch.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- November 2020
- DOI:
- arXiv:
- arXiv:2009.00030
- Bibcode:
- 2020MNRAS.498.4605H
- Keywords:
-
- gravitational waves;
- stars: neutron;
- pulsars: individual: PSR J0537-6910;
- X-rays: individual: PSR J0537-6910;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Solar and Stellar Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 11 pages, 10 figures