Crucial role of neutron diffusion in the crust of accreting neutron stars
Abstract
Observed temperatures of transiently accreting neutron stars in the quiescent state are generally believed to be supported by deep crustal heating, associated with non-equilibrium exothermic reactions in the crust. Traditionally, these reactions are studied by considering nuclear evolution governed by compression of the accreted matter. Here, we show that this approach has a basic weakness; that is, in some regions of the inner crust the conservative forces, applied for matter components (nuclei and neutrons), are not in mechanical equilibrium. In principle, the force balance can be restored by dissipative forces; however, the required diffusion fluxes are of the same order as total baryon flux at Eddington accretion. We argue that redistribution of neutrons in the inner crust should be involved in realistic model of accreted crust.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- June 2020
- DOI:
- arXiv:
- arXiv:2004.00997
- Bibcode:
- 2020MNRAS.495L..32C
- Keywords:
-
- accretion;
- accretion discs;
- stars: neutron;
- X-rays: binaries;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Solar and Stellar Astrophysics;
- Nuclear Theory
- E-Print:
- Accepted for publication in MNRAS:Letters, 6 pages, 1 figure