Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon
Abstract
Herbig Ae/Be (HAeBe) stars are the intermediate-mass analogues of low-mass T Tauri stars. Both groups may present signs of accretion, outflow, and IR excess related to the presence of circumstellar discs. Magnetospheric accretion models are generally used to describe accreting T Tauri stars, which are known to have magnetic fields strong enough to truncate their inner discs and form accretion funnels. Since few HAeBe stars have had magnetic fields detected, they may accrete through a different mechanism. Our goal is to analyse the morphology and variability of emission lines that are formed in the circumstellar environment of HAeBe stars and use them as tools to understand the physics of the accretion/ejection processes in these systems. We analyse high-resolution (R ∼ 47 000) UVES/ESO spectra of two HAeBe stars - HD 261941 (HAe) and V590 Mon (HBe) that are members of the young (∼3 Myr) NGC 2264 stellar cluster and present indications of sufficient circumstellar material for accretion and ejection processes to occur. We determine stellar parameters with synthetic spectra, and also analyse and classify circumstellar lines such as H α, H β, and He I λ5875.7, according to their morphologies. We model the H α mean line profile, using a hybrid Magnetohydrodynamics (MHD) model that includes a stellar magnetosphere and a disc wind, and find signatures of magnetically driven outflow and accretion in HD 261941, while the H α line of V590Mon seems to originate predominantly in a disc wind.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- May 2020
- DOI:
- Bibcode:
- 2020MNRAS.494.3512M
- Keywords:
-
- accretion;
- accretion discs;
- techniques: spectroscopic;
- stars: pre-main sequence;
- stars: Herbig Ae/Be