THOR 42: A touchstone ∼24 Myr-old eclipsing binary spanning the fully convective boundary
Abstract
We present the characterization of CRTS J055255.7-004426 (=THOR 42), a young eclipsing binary comprising two pre-main sequence M dwarfs (combined spectral type M3.5). This nearby (103 pc), short-period (0.859 d) system was recently proposed as a member of the ∼24 Myr-old 32 Orionis Moving Group. Using ground- and space-based photometry in combination with medium- and high-resolution spectroscopy, we model the light and radial velocity curves to derive precise system parameters. The resulting component masses and radii are 0.497 ± 0.005 and 0.205 ± 0.002 {M}_{⊙ }, and 0.659 ± 0.003 and 0.424 ± 0.002 {R}_{⊙ }, respectively. With mass and radius uncertainties of ∼1 per cent and ∼0.5 per cent, respectively, THOR 42 is one of the most precisely characterized pre-main sequence eclipsing binaries known. Its systemic velocity, parallax, proper motion, colour-magnitude diagram placement, and enlarged radii are all consistent with membership in the 32 Ori Group. The system provides a unique opportunity to test pre-main sequence evolutionary models at an age and mass range not well constrained by observation. From the radius and mass measurements we derive ages of 22-26 Myr using standard (non-magnetic) models, in excellent agreement with the age of the group. However, none of the models can simultaneously reproduce the observed mass, radius, temperature, and luminosity of the coeval components. In particular, their H-R diagram ages are 2-4 times younger and we infer masses ∼50 per cent smaller than the dynamical values.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- February 2020
- DOI:
- 10.1093/mnras/stz3198
- arXiv:
- arXiv:1911.05925
- Bibcode:
- 2020MNRAS.491.4902M
- Keywords:
-
- binaries: eclipsing;
- binaries: spectroscopic;
- stars: evolution;
- stars: fundamental parameters;
- stars: low mass;
- stars: pre-main-sequence;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- Accepted for publication in MNRAS. 22 pages. Tables 4 and 5 are available in full as ancillary files