Examining the Climate Effects of a Regional Nuclear Weapons Exchange Using a Multiscale Atmospheric Modeling Approach
Abstract
Recent studies examine the potential for large urban fires ignited in a hypothetical nuclear exchange of one hundred 15 kt weapons between India and Pakistan to alter the climate (e.g., Mills et al., 2014, https://doi.org/10.1002/2013EF000205, and Reisner et al., 2018, https://doi.org/10.1002/2017JD027331). In this study, the global climate forcing and response is predicted by combining two atmospheric models, which together span the micro-scale to global scale processes involved. Individual fire plumes are modeled using the Weather Research and Forecasting (WRF) model, and the climate response is predicted by injecting the WRF-simulated black carbon (BC) emissions into the Energy Exascale Earth System Model (E3SM) atmosphere model Version 1 (EAMv1). Consistent with previous studies, the radiative forcing depends on smoke quantity and injection height, examined here as functions of fuel loading and atmospheric conditions. If the fuel burned is 1 g cm-2, BC is quickly removed from the troposphere, causing no global mean climate forcing. If the fuel burned is 16 g cm-2 and 100 such fires occurred simultaneously with characteristics similar to historical large urban firestorms, BC reaches the stratosphere, reducing solar radiation and causing cooling at the Earth's surface. Uncertainties in smoke composition and aerosol representation cause large uncertainties in the magnitude of the radiative forcing and cooling. The approximately 4 yr duration of the radiative forcing is shorter than the 8 to 15 yr that has previously been simulated. Uncertainties point to the need for further development of potential nuclear exchange scenarios, quantification of fuel loading, and improved understanding of fire propagation and aerosol modeling.
- Publication:
-
Journal of Geophysical Research (Atmospheres)
- Pub Date:
- December 2020
- DOI:
- Bibcode:
- 2020JGRD..12533056W
- Keywords:
-
- regional climate impacts;
- nuclear weapons;
- nuclear winter;
- firestorm