An evolving photoelectric efficiency at cosmic noon?
Abstract
To sustain star formation rates (SFRs) of hundreds to thousands of solar masses per year over millions of years, a galaxy must efficiently cool its gas. At z ∼ 2, the peak epoch for stellar mass assembly, tracers of gas heating and cooling remain largely unexplored. For one z ∼ 2 starburst galaxy GS IRS20, we present Spitzer IRS spectroscopy of Polycyclic Aromatic Hydrocarbon (PAH) emission, and ALMA observations of [C II] 158 μm fine-structure emission which we use to probe ISM heating/cooling. Coupled with an unusually warm dust component, the ratio of [C II] /PAH emission suggests a low photolelectric efficiency, and/or the importance of cooling from other far-IR lines in this galaxy. A low photoelectric efficiency at z ∼ 2 could be key for the peak in the SFR density of the universe by decoupling stellar radiation from ISM gas temperatures.
- Publication:
-
Uncovering Early Galaxy Evolution in the ALMA and JWST Era
- Pub Date:
- 2020
- DOI:
- 10.1017/S1743921319008925
- Bibcode:
- 2020IAUS..352..243M
- Keywords:
-
- galaxies: high-redshift;
- galaxies: individual;
- galaxies: ISM;
- galaxies: starburst