Evaluation of land cover effects on soil-moisture dynamics: adaptation measures from the territory (Bidasoa catchment, Western Pyrenees).
Abstract
The Pyrenees mountain range is the main source of water resources for a large surrounding region, extending from the Atlantic to the Mediterranean. This area is particularly vulnerable to the consequences of climate change. The PIRAGUA project (Interreg-POCTEFA) evaluates the components of the hydrological cycle in the Pyrenees, with the central objective of improving the adaptation of territories to climate change. One of its tasks focuses on the analysis of the effect that land cover and associated soil properties have on different hydrological services. Indeed, land use and its management directly affect soil hydrology, which is a key factor in streamflow temporal distribution. A better understanding of the water-soil-vegetation system is essential for a reliable hydrological modelling which results should be considered in adaptation strategies to climate change.To this aim, chemical and physical characterization of soil properties is being conducted at the 681 km2 humid Bidasoa catchment (Pyrenees). In order to understand the soil-moisture dynamics, a monitoring network was established in July 2019 in a 0.4 km2 experimental site within the catchment. Four soil-moisture stations and a meteorological one were installed within the same geological setting, same rainfall conditions and similar soil texture characteristics (silt-loamy texture and about one meter deep), but different land covers (pine forest, oak forest, grassland and fernery). Continuous soil-moisture data obtained to date show that upper soil layers (0-20 cm) are deeply influenced by top vegetation cover. Grassland has the highest soil-moisture variations, ranging from 16.2 to 36.6 %, as they closely mirror precipitation patterns. Pine and oak forests present similar variation trend, varying from 33.9 to 42.8 % and from 35.3 to 41.9 %, respectively. Soil-moisture at fernery goes from 30.5 to 36 %. Minimum soil-moisture values coincide in all plots with the end of the dry period (end of September). Maximum values, occurring during very heavy and continuous precipitation in November (647 mm registered from 1 to 24 November), are considered as a proxy for saturated soil conditions. In all the plots, fluctuations in soil-moisture diminish significantly with increasing soil depth. However, considerable differences are found in the vertical soil-moisture profile across land covers. In both forest plots, a decreasing trend of soil-moisture within the profile is observed, while grassland and fernery show an increasing trend. Preliminary results show that soil water infiltration is different among different land covers, which give some insight into the hydrological functionality of soil under different vegetation types. Longer records of soil-moisture dynamics in the area would contribute to better assess the linkages between water, soil and vegetation and, in turn, to improve hydrological modelling in humid mountainous areas. This knowledge is necessary for a better consideration of the adaptation measures that should be taken from the territory.
- Publication:
-
EGU General Assembly Conference Abstracts
- Pub Date:
- May 2020
- DOI:
- 10.5194/egusphere-egu2020-15114
- Bibcode:
- 2020EGUGA..2215114V