Gene and genome duplications in the evolution of chemodiversity: perspectives from studies of Lamiaceae
Abstract
Plants are reservoirs of extreme chemical diversity, yet biosynthetic pathways remain underexplored in the majority of taxa. Access to improved, inexpensive genomic and computational technologies has recently enhanced our understanding of plant specialized metabolism at the biochemical and evolutionary levels including the elucidation of pathways leading to key metabolites. Furthermore, these approaches have provided insights into the mechanisms of chemical evolution, including neofunctionalization and subfunctionalization, structural variation, and modulation of gene expression. The broader utilization of genomic tools across the plant tree of life, and an expansion of genomic resources from multiple accessions within species or populations, will improve our overall understanding of chemodiversity. These data and knowledge will also lead to greater insight into the selective pressures contributing to and maintaining this diversity, which in turn will enable the development of more accurate predictive models of specialized metabolism in plants.
- Publication:
-
Current Opinion in Plant Biology
- Pub Date:
- June 2020
- DOI:
- 10.1016/j.pbi.2020.03.005
- Bibcode:
- 2020COPB...55...74L