SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart
Abstract
We present optical, radio, and X-ray observations of SN 2020bvc (=ASASSN-20bs, ZTF 20aalxlis), a nearby ( $z=0.0252;$ d = 114 Mpc) broad-line (BL) Type Ic supernova (SN) and the first double-peaked Ic-BL discovered without a gamma-ray burst (GRB) trigger. Our observations show that SN 2020bvc shares several properties in common with the Ic-BL SN 2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio luminosity ( ${L}_{\mathrm{radio}}\approx {10}^{37}\,\mathrm{erg}\,{{\rm{s}}}^{-1}$ ) is brighter than ordinary core-collapse SNe but fainter than LLGRB SNe such as SN 1998bw (associated with LLGRB 980425). We model our VLA observations (spanning 13-43 days) as synchrotron emission from a mildly relativistic (v ≳ 0.3c) forward shock. Second, with Swift and Chandra, we detect X-ray emission (LX ≈ 1041 erg ${{\rm{s}}}^{-1}$ ) that is not naturally explained as inverse Compton emission or part of the same synchrotron spectrum as the radio emission. Third, high-cadence (6× night-1) data from the Zwicky Transient Facility (ZTF) show a double-peaked optical light curve, the first peak from shock cooling of extended low-mass material (mass ${M}_{e}\lt {10}^{-2}\,{M}_{\odot }$ at radius Re > 1012 cm) and the second peak from the radioactive decay of ${}^{56}\mathrm{Ni}$ . SN 2020bvc is the first double-peaked Ic-BL SN discovered without a GRB trigger, so it is noteworthy that it shows X-ray and radio emission similar to LLGRB SNe. For four of the five other nearby (z ≲ 0.05) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN 2006aj and SN 2020bvc, i.e., that lasts ≈1 day and reaches a peak luminosity M ≈ -18. Follow-up X-ray and radio observations of Ic-BL SNe with well-sampled early optical light curves will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- October 2020
- DOI:
- arXiv:
- arXiv:2004.10406
- Bibcode:
- 2020ApJ...902...86H
- Keywords:
-
- Radio transient sources;
- High energy astrophysics;
- Transient sources;
- Core-collapse supernovae;
- Supernovae;
- Type Ic supernovae;
- X-ray transient sources;
- Surveys;
- Gamma-ray bursts;
- 2008;
- 739;
- 1851;
- 304;
- 1668;
- 1730;
- 1852;
- 629;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- Accepted to ApJ. 39 pages, 17 figures. Comments welcome