Helium Enhancement in the Metal-rich Red Giants of ω Centauri
Abstract
The helium-enriched (He-enriched) metal-rich red giants of ω Centauri, discovered by Hema & Pandey using the low-resolution spectra from the Vainu Bappu Telescope, and confirmed by the analyses of the high-resolution spectra obtained from the HRS-South African Large Telescope for LEID 34225 and LEID 39048, are reanalyzed here to determine their degree of He enhancement/hydrogen deficiency (H deficiency). The observed MgH band combined with model atmospheres with differing He/H ratios are used for the analyses. The He/H ratios of these two giants are determined by enforcing the fact that the derived Mg abundances from the Mg I lines and from the subordinate lines of the MgH band must be same for the adopted model atmosphere. The estimated He/H ratios for LEID 34225 and LEID 39048 are 0.15 ± 0.04 and 0.20 ± 0.04, respectively, whereas the normal He/H ratio is 0.10. Following the same criteria for the analyses of the other two comparison stars (LEID 61067 and LEID 32169), a normal He/H ratio of 0.10 is obtained. The He/H ratio of 0.15-0.20 corresponds to a mass fraction of helium (Z(He) = Y) of about 0.375-0.445. The range of helium enhancement and the derived metallicity of the program stars are in line with those determined for ω Cen's blue main-sequence stars. Hence, our study provides the missing link for the evolutionary track of the metal-rich helium-enhanced population of ω Centuari. This research work is the very first spectroscopic determination of the amount of He enhancement in the metal-rich red giants of ω Centauri using the Mg I and MgH lines.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- July 2020
- DOI:
- arXiv:
- arXiv:2005.06807
- Bibcode:
- 2020ApJ...897...32H
- Keywords:
-
- Globular star clusters;
- Chemical abundances;
- Red giant stars;
- Hydrogen deficient stars;
- Chemically peculiar stars;
- Stellar evolutionary tracks;
- 769;
- 224;
- 1600;
- 656;
- 226;
- 1372;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 22 pages, 3 fugures, 1 table, Accepted for publication in the Astrophysical Journal