Variability of Massive Stars in M31 from the Palomar Transient Factory
Abstract
Using data from the (intermediate) Palomar Transient Factory (iPTF), we characterize the time variability of ≈500 massive stars in M31. Our sample is those stars that are spectrally typed by Massey and collaborators, including Luminous Blue Variables, Wolf-Rayets, and warm and cool supergiants. We use the high-cadence, long-baseline (≈5 yr) data from the iPTF survey, coupled with data-processing tools that model complex features in the light curves. We find widespread photometric (R-band) variability in the upper Hertzsprung Russell diagram (or CMD) with an increasing prevalence of variability with later spectral types. Red stars (V - I > 1.5) exhibit larger amplitude fluctuations than their bluer counterparts. We extract a characteristic variability timescale, tch, via wavelet transformations that are sensitive to both continuous and localized fluctuations. Cool supergiants are characterized by longer timescales (>100 days) than the hotter stars. The latter have typical timescales of tens of days but cover a wider range, from our resolution limit of a few days to longer than 100 days. Using a 60 night block of data straddling two nights with a cadence of around 2 minutes, we extracted tch in the range 0.1-10 days with amplitudes of a few percent for 13 stars. Though there is broad agreement between the observed variability characteristics in the different parts of the upper CMD with theoretical predictions, detailed comparison requires models with a more comprehensive treatment of the various physical processes operating in these stars, such as pulsation, subsurface convection, and the effect of binary companions.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- April 2020
- DOI:
- arXiv:
- arXiv:1908.02439
- Bibcode:
- 2020ApJ...893...11S
- Keywords:
-
- Andromeda Galaxy;
- Massive stars;
- Supergiant stars;
- Catalogs;
- Surveys;
- 39;
- 732;
- 1661;
- 205;
- 1671;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 20 pages + Appendix, accepted to ApJ