Probing the Properties of the Pulsar Wind in the Gamma-Ray Binary HESS J0632+057 with NuSTAR and VERITAS Observations
Abstract
HESS J0632+057 is a gamma-ray binary composed of a compact object orbiting a Be star with a period of about 315 days. Extensive X-ray and TeV gamma-ray observations have revealed a peculiar light curve containing two peaks, separated by a dip. We present the results of simultaneous observations in hard X-rays with NuSTAR and in TeV gamma-rays with VERITAS, performed in 2017 November and December. These observations correspond to the orbital phases φ ≈ 0.22 and 0.3, where the fluxes are rising toward the first light-curve peak. A significant variation of the spectral index from 1.77 ± 0.05 to 1.56 ± 0.05 is observed in the X-ray data. The multiwavelength spectral energy distributions (SED) derived from the observations are interpreted in terms of a leptonic model, in which the compact object is assumed to be a pulsar and nonthermal radiation is emitted by high-energy electrons accelerated at the shock formed by the collision between the stellar and pulsar wind. The results of the SED fitting show that our data can be consistently described within this scenario, and allow us to estimate the magnetization of the pulsar wind at the location of the shock formation. The constraints on the pulsar wind magnetization provided by our results are shown to be consistent with those obtained from other systems.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- January 2020
- DOI:
- 10.3847/1538-4357/ab59de
- arXiv:
- arXiv:1911.09434
- Bibcode:
- 2020ApJ...888..115A
- Keywords:
-
- Gamma-ray sources;
- High mass x-ray binary stars;
- Gamma-ray astronomy;
- Particle astrophysics;
- Pulsars;
- 633;
- 733;
- 628;
- 96;
- 1306;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- Accepted for publication in The Astrophysical Journal