The missing mass conundrum of post-common-envelope planetary nebulae
Abstract
Most planetary nebulae (PNe) show beautiful, axisymmetric morphologies despite their progenitor stars being essentially spherical. Angular momentum provided by a close binary companion is widely invoked as the main agent that would help eject an axisymmetric nebula, after a brief phase of engulfment of the secondary within the envelope of the Asymptotic Giant Branch (AGB) star, known as a common envelope (CE). The evolution of the AGB would be thus interrupted abruptly, its (still quite) massive envelope fully ejected to form the PN, which should be more massive than a PN coming from the same star were it single. We test this hypothesis by deriving the ionised+molecular masses of a pilot sample of post-CE PNe and comparing them to a regular PNe sample. We find the mass of post-CE PNe to be actually lower, on average, than their regular counterparts, raising some doubts on our understanding of these intriguing objects.
- Publication:
-
Highlights on Spanish Astrophysics X
- Pub Date:
- March 2019
- Bibcode:
- 2019hsax.conf..392S