Extra invariance of principal shift invariant spaces and the Zak transform
Abstract
We prove a necessary and sufficient condition for a principal shift invariant space of $L^2(\mathbb{R})$ to be invariant under translations by the subgroup $\frac{1}{N} \mathbb{Z}, N>1$. This condition is given in terms of the Zak transform of the group $\frac{1}{N} \mathbb{Z}.$ This result is extended to principal shift invariant spaces generated by a lattice in a general locally compact abelian (LCA) group.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2019
- DOI:
- arXiv:
- arXiv:1904.10538
- Bibcode:
- 2019arXiv190410538B
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 47A15;
- 43A25;
- 43A32
- E-Print:
- 17 pages