Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations
Abstract
We derive series representations for the tau functions of the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations, as degenerations of the tau functions of the $q$-Painlevé VI equation in [Jimbo M., Nagoya H., Sakai H., J. Integrable Syst. 2 (2017), xyx009, 27 pages]. Our tau functions are expressed in terms of $q$-Nekrasov functions. Thus, our series representations for the tau functions have explicit combinatorial structures. We show that general solutions to the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations are written by our tau functions. We also prove that our tau functions for the $q$-Painlevé $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations satisfy the three-term bilinear equations for them.
- Publication:
-
SIGMA
- Pub Date:
- September 2019
- DOI:
- 10.3842/SIGMA.2019.074
- arXiv:
- arXiv:1811.03285
- Bibcode:
- 2019SIGMA..15..074M
- Keywords:
-
- q-Painlevé equations; tau functions; q-Nekrasov functions; bilinear equations;
- Mathematical Physics
- E-Print:
- SIGMA 15 (2019), 074, 17 pages