Pebble accretion in Class 0/I YSOs as a possible pathway for early planet formation
Abstract
Recent theoretical works suggest that the pebble accretion process is important for planet formation in protoplanetary discs, because it accelerates the growth of planetary cores. While several observations reveal axisymmetric sharp gaps in very young discs, which may be indicative of the existence of planets. We investigate the possibility of planet formation via pebble accretion in much earlier phases, the gravitationally unstable discs of Class 0/I young stellar objects. We find that under the conditions of the Class 0/I discs, the pebble accretion time-scales can be shorter compared to the typical protoplanetary discs due to larger gas and dust accretion rate, but also find that the accretion time-scale is not always a decreasing function of the gas accretion rate. By using estimated accretion time-scales, we give a required initial mass to form cores of gas giants within the lifetime of Class 0/I phases under several parameters, such as radial distances from the host star, gas accretion rates, and dust-to-gas mass ratio. In the most optimistic case, for example the dust-to-gas mass ratio is f = 3fsolar, ∼10-4 M⊕ objects at 10 au can grow to 10 M⊕ cores during the typical lifetime of the Class 0/I phases, 0.5 Myr.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- April 2019
- DOI:
- 10.1093/mnras/stz069
- arXiv:
- arXiv:1901.01714
- Bibcode:
- 2019MNRAS.484.1574T
- Keywords:
-
- planets and satellites: formation;
- planets and satellites: physical evolution;
- planet-disc interactions;
- planetary systems;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 15 pages, 10 figures, accepted for publication in MNRAS