On super (a,d)-{P}_{2}\unicode{x22B3}H antimagic total labeling of disjoint union of comb product graphs
Abstract
A Super (a,d)-{P}2\unicode{x22B3}H antimagic total labeling of a graph G={C}n\unicode{x22B3}H with p=|V(G)| vertices and q=|E(G)| edges is a bijective function λ from the set \{V(G)\cup E(G)\} onto the set \{1,2,3,\ldots |V(G)|+|E(G)|\} , such that the total {P}2\unicode{x22B3}H —weights, \begin{array}{c}H\ {w}{P2\unicode{x22B3}H}=\displaystyle {\sum }\upsilon \in V({P2\unicode{x22B3}H)}λ (\upsilon )+\displaystyle {\sum }e\in E({P2\unicode{x22B3}H)}λ (e)\end{array} , form an arithmetic sequence with the smallest label appears on the vertex. This paper discusses about super (a,d)-{P}2\unicode{x22B3}H antimagic total labeling of disjoint union of graph G={C}n\unicode{x22B3}H .
- Publication:
-
Journal of Physics Conference Series
- Pub Date:
- April 2019
- DOI:
- 10.1088/1742-6596/1211/1/012012
- Bibcode:
- 2019JPhCS1211a2012P