On the origin of the enhancement of defect related visible emission in annealed ZnO micropods
Abstract
We report an in-depth analysis of ZnO micropods emission. A strong correlation between defect and interband emissions is observed. ZnO micropods were grown using low-temperature chemical bath deposition (CBD). ZnO micropods exhibited perfectly-crystalline hexagonally-shaped facets with various numbers of branches. Raman studies showed that ZnO micropods contained trapped zinc hydroxide (OH) and imidogen (NH) defects that originate from the precursor solution used in the CBD technique. These defects were evacuated by thermal annealing, leading to the recrystallization in the volume of the micropods and the formation of structural defects at their surface, as attested by scanning electron microscopy and X-ray diffraction. More importantly, the thermal annealing was accompanied by a breakdown of the NH defects, which resulted in a nitrogen doping of the ZnO micropods. The structural changes as well as the nitrogen doping resulted in a drastic change in the photoluminescence (PL) spectrum of the ZnO micropods that exhibited a stronger free exciton UV emission as well as a stronger visible (white) emission. An in-depth low-temperature PL study of both UV and visible emission reveals a strong interplay between the structural-defect bound excitonic UV emission (Y-band) and the deep donor (visible) emission, which suggests a rather complex emission mechanism involving an efficient nonradiative energy transfer between the Y-band states and defect states leading to the enhanced visible emission of ZnO micropods after high temperature annealing.
- Publication:
-
Journal of Applied Physics
- Pub Date:
- October 2019
- DOI:
- 10.1063/1.5111184
- Bibcode:
- 2019JAP...126n5104G