The Radius-Luminosity Relationship Depends on Optical Spectra in Active Galactic Nuclei
Abstract
The radius-luminosity ({R}{{H}β }{--}{L}5100) relationship of active galactic nuclei (AGNs) established by the reverberation mapping (RM) observations has been widely used as a single-epoch black hole mass estimator in the research of large AGN samples. However, the recent RM campaigns discovered that the AGNs with high-accretion rates show shorter time lags by factors of a few comparing with the predictions from the {R}{{H}β }{--}{L}5100 relationship. The explanation of the shortened time lags has not been finalized yet. We collect eight different single-epoch spectral properties to investigate how the shortening of the time lags correlates with those properties and to determine the origin of the shortened lags. We find that the flux ratio between Fe II and Hβ emission lines shows the most prominent correlation, thus confirming that accretion rate is the main driver for the shortened lags. In addition, we establish a new scaling relation including the relative strength of Fe II emission. This new scaling relation can provide less biased estimates of the black hole mass and accretion rate from the single-epoch spectra of AGNs.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- November 2019
- DOI:
- arXiv:
- arXiv:1909.06735
- Bibcode:
- 2019ApJ...886...42D
- Keywords:
-
- Active galactic nuclei;
- Active galaxies;
- Reverberation mapping;
- Supermassive black holes;
- Quasars;
- 16;
- 17;
- 2019;
- 1663;
- 1319;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 18 pages, 9 figures, 2 tables, accepted for publication in The Astrophysical Journal