Two New HATNet Hot Jupiters around A Stars and the First Glimpse at the Occurrence Rate of Hot Jupiters from TESS
Abstract
Wide-field surveys for transiting planets are well suited to searching diverse stellar populations, enabling a better understanding of the link between the properties of planets and their parent stars. We report the discovery of HAT-P-69 b (TOI 625.01) and HAT-P-70 b (TOI 624.01), two new hot Jupiters around A stars from the Hungarian-made Automated Telescope Network (HATNet) survey that have also been observed by the Transiting Exoplanet Survey Satellite. HAT-P-69 b has a mass of {3.58}-0.58+0.58 M Jup and a radius of {1.676}-0.033+0.051 R Jup and resides in a prograde 4.79 day orbit. HAT-P-70 b has a radius of {1.87}-0.10+0.15 R Jup and a mass constraint of < 6.78 (3σ ) M Jup and resides in a retrograde 2.74 day orbit. We use the confirmation of these planets around relatively massive stars as an opportunity to explore the occurrence rate of hot Jupiters as a function of stellar mass. We define a sample of 47,126 main-sequence stars brighter than T mag = 10 that yields 31 giant planet candidates, including 18 confirmed planets, 3 candidates, and 10 false positives. We find a net hot Jupiter occurrence rate of 0.41 ± 0.10% within this sample, consistent with the rate measured by Kepler for FGK stars. When divided into stellar mass bins, we find the occurrence rate to be 0.71 ± 0.31% for G stars, 0.43 ± 0.15% for F stars, and 0.26 ± 0.11% for A stars. Thus, at this point, we cannot discern any statistically significant trend in the occurrence of hot Jupiters with stellar mass.
Based on observations obtained with the Hungarian-made Automated Telescope Network. Based in part on observations obtained with the Tillinghast Reflector 1.5 m telescope and the 1.2 m telescope, both operated by the Smithsonian Astrophysical Observatory at the Fred Lawrence Whipple Observatory in Arizona. This work makes use of the Smithsonian Institution High Performance Cluster (SI/HPC). Based in part on observations made with the Southern African Large Telescope (SALT).- Publication:
-
The Astronomical Journal
- Pub Date:
- October 2019
- DOI:
- arXiv:
- arXiv:1906.00462
- Bibcode:
- 2019AJ....158..141Z
- Keywords:
-
- planetary systems;
- stars: individual: HAT-P-69;
- HAT-P-70;
- TIC379929661;
- TIC399870368;
- techniques: photometric;
- techniques: spectroscopic;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- Accepted for publication by AJ